

CountNet: End to End Deep Learning for Crowd
Counting

Bryan Wilie
Bandung Institute of Technology

Bandung, Indonesia
brywilie25@gmail.com

Samuel Cahyawijaya
Bandung Institute of Technology

Bandung, Indonesia
samuel.cahyawijaya@gmail.com

Widyawardana Adiprawita
Bandung Institute of Technology

Bandung, Indonesia
wadiprawita@stei.itb.ac.id

Abstract—We approach crowd counting problem as a
complex end to end deep learning process that needs both a
correct recognition and counting. This paper redefines the
crowd counting process to be a counting process, rather than
just a recognition process as previously defined. Xception
Network is used in the CountNet and layered again with fully
connected layers. The Xception Network pre-trained
parameter is used as transfer learning to be trained again with
the fully connected layers. CountNet then achieved a better
crowd counting performance by training it with augmented
dataset that robust to scale and slice variations.

Keywords—transfer learning, crowd counting, deep learning

I. INTRODUCTION

Crowd counting task in deep learning community is
aiming to count every head of a human being present in a
crowd shown in a photograph. The crowd in the photo is
usually present in a different density, hence the name of the
crowd counting, in a dense and sparse crowd. The crowd
counting problem is actually a counting problem, done by
estimating the number of people in the crowd, in regards to
the distribution of the crowd density at one gathering area.

One of the uniqueness in this deep learning task is that
not only the whole photograph can be a training data, but
also slices of the photograph can represent a whole
photograph as a no crowd slices, sparse crowd slices, dense
crowd slices, and the mixture of them all. This brings
advantage to data collection process. Whilst in another deep
learning task, researcher needs to acquire hundred thousands
of data, 50 high resolution photograph can already make the
same abundances. From this abundances, we can get millions
of training data, just by using some augmenting processes.

Besides that, crowd counting is a vast perspective
problem. Some of the perspective in the earlier work is the
detection [12, 13, 20, 21, 22, 24] and regression [2, 3, 4, 5, 8,
23] network. Detection approach crowd counting is
successful for scenes with low crowd density, but the
performance on a very dense crowd is still problematic. This
happened because on these dense crowd environment,
usually only partial of the whole humans are visible, only
head to shoulder for horizontally taken photos, and only the
top of the head, for a orthogonally taken photos. For this
method, parts to be detected by the method is too small, and
the counting method will not detect any object that is not a
crowd. This is why this method tends to underestimate the
counting in a dense crowd settings, and that is still a
challenge for the detection method.

While counting by detection needs big part of a human
body being located, crowd counting by regression simply
estimates crowd counts without knowing the location of each
person. Density estimation is sometimes used as an
intermediate result, and then using a linear operation, e.g.

sum, a crowd counting method get the overall crowd count
results [2, 3]. The regression part, in [5] for example, is using
fully CNN model for counting in highly congested scenes.
Different with detection based crowd counting, regression
based counting tends to overestimate sparse crowd settings
counting prediction. This is happening because regression
method is trying to find an n-dimensional polynomial
function of linear and non-linear relationship between pixels
and counting from each of the pixel. The performance of this
method relies on the statistical stability of the pixels data.
Thus, regression method needs is to explore intrinsic
statistical principle of the whole data.

Density estimation method itself is good for regression
crowd counting if the intermediate output is handled again by
a human processor or processed in an optimized hand
engineered feature mapping. As described before, one of
feature mapping used is a linear operation, which is to sum
each pixels to get the crowd count. This approach should be
working smoothly if the density making process could be
inversed without a loss, or had an inverse for each pixels
translation into the density, or if the blur filtered area’s total
pixels value can be retained after the filtering process, so that
the density making process do not change the ground truth
crowd count. Crowd counting is a task with a rich variety of
low and high level features and not only has many non-
linearity in its inputs, but also has many non-linearity in its
outputs. This actually is not a simple counting task, it is
actually a task to generalize massive non-linearity provided
by differences of the crowd density.

This research approaches crowd counting task as an end
to end deep learning process. This process is partly different
with some previous implementation of crowd counter. Some
implementation only apply deep learning algorithm until it
produces the output of predicted density map, thus the title,
density estimation, and then sum the predicted density map
to get the predicted crowd count. By that term, the algorithm
performance is limited by the chosen counting method, and
the end to end deep learning process is opening that limit so
that the machine can also learn better counting method as
well. The limitation is illustrated in Fig. 1, and the end-to-
end solution is illustrated in Fig. 2.

Fig. 1. Previous implementations, introducing errors as e1, e2, and e3

Fig. 2. End to end deep learning implementations.

As we can see on Fig. 1., the previous’ implementations
introduces three kinds of errors, e1, e2, and e3, from the

In Density Prediction
e1

Density Out

e2
e3

In End to end deep learning method Out

e1, e2, e3

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

978-1-5386-8402-3/18/$31.00 ©2018 IEEE 128

density making process, slicing process, prediction process
and the output counting process respectively. While the
prediction error (e2) is purely handled by the iterative
training from the network, other errors such as density
making error, slicing error and output counting error is not
seen and calculated by the iterative training. That’s why the
network will have errors at least from the sum of e1, e2 and
e3. Different approach in Fig. 2. let the iterative training
process see and calculate the counting errors and takes it as
loss in a learning process. This way, we let the end-to-end
deep learning process also learn from the counting errors by
not limiting the potential performances of the counting
system. This specific advantage makes the end-to-end
approach a more favorable approach for crowd counting.

Although the process tends not to limit the potential
performances of the counting system, it needs a network that
can generalize well to every linearity and nonlinearity
available in the dataset and also a general training data. If the
learning algorithm is a large-enough neural network and if it
is trained with enough training data, it has the potential to do
very well, and perhaps even approach the optimal error rate
[15]. This end to end deep learning method can be
confidently applied also because the result is not a decision,
nor that the prediction error could turn into a fatal error.

Covered in this paper is a crowd counting in a spatial
term, not in a temporal term. This paper also redefines
regression and detection method as a crowd counting with
recognition-priority method, as the result is expected to
reflect the ground truth density as close as possible and try to
count the crowd with the density prediction being summed.
CountNet is a counting-priority method and in it, the
counting step will be learned by the algorithm itself, not by a
hardwired sum method. This is handled by using extra fully
connected layers. Extensive data augmentation used is by
sampling patches from the multi-scale image representation
to make the counting system robust to the scale variation.
Our approach is trained and evaluated on the challenging
UCF_CC_50 extremely dense crowds dataset and has
achieved better result.

In summary, we make the below contributions:

 We find that crowd counting task is a problem of
finding a generalization of many non-linearly
distributed crowd density that can’t be counted or
categorized easily.

 Based on that understanding, we create an end to end
deep learning method, CountNet, and tune every
hyper parameters of it so that the algorithm can be
trained with a good amount of a general kind data, do
the model fitting properly, and expect many linearity
and non-linearity to be captured by the algorithm.

 Experimental results reveal that our method can
achieve a better result on a challenging crowd
counting dataset

II. RELATED WORKS

A. Crowd Counting by Detection

Earlier works approach crowd counting by detecting the
counted crowd. Some of the approaches are using region
proposal generators, low-level features [21, 22], binary
classifiers like Naive Bayes classifier [24], and Random

Forest [20]. There are also CNN based object detectors [12,
13] used to approach this crowd counting task. Detection
based approach is successful for predicting scenes with low
crowd density. On the occasions with high crowd density
like in our chosen dataset, these approach performances are
still not that good. The detection based crowd counting tends
to underestimate the crowd counting predictions on the high
crowd density, because only part of the whole objects are
visible for localization be done by object detectors, or
because the object in those highly congested areas are simply
too small to be detected.

B. Crowd Counting by Regression

Counting by regression is not requiring the exact local
position of each person in the crowd. In fact, some of the
preliminary work use edge and detection features to learn
mapping from image patterns to crowd counts. A deep
convolutional neural network (CNN) is also used in a
switchable training scheme for crowd counting task in [2].
The early approach of crowd counting is using a
concatenated deep VGG network and parallel shallow
network [3], which at the time, performed the state-of-the-art
result. Despite its error to the large crowd dataset, the result
is actually precise at some images in the dataset. Some others
used a fully convolutional network architecture [5] with a
number of max pooling layer and a 2D integrator which is an
element-wise sum, to deliver the crowd count, or with a
cascaded multi-task learning settings for density estimation
[23], or with a combination with Gating CNN [8], which is
proven to be specialized in a specific appearance and has the
robustness to large appearance changes. Others implemented
a multi-scale convolutional neural network to extract scale-
relevant features from crowd images using a single column
network based on the multi-scale blob [4]. Counting by
regression is quite reliable in crowded settings and tends to
overestimate predictions in a low crowd settings. This
overestimations and errors in the regression based approach
mainly come from the statistical stability of the data and the
neediness of more instances to help explore intrinsic of that
statistical stability principles.

C. Crowd Counting by Other Methods

Combining the best from both sides, there is an approach
that combines results from the regression network and the
detection network [11]. This superposition combination
method is unique as it trains another network called ‘Quality-
Net block’ to captures the different importance weight of two
density maps by dynamically assessing the qualities of the
regression prediction and detection prediction for each pixel.
This approach also covers the non-linearity introduced by
different crowd density that some tried to grasp using a
multi-task learning method. Other novel crowd counting
approach leverages abundantly available unlabeled crowd
imagery in a learning-to-rank framework [19]. This approach
learn from unlabeled datasets by incorporating learning-to-
rank in a multi-task network which simultaneously ranks
images and estimates crowd density maps.

III. CROWD COUNTING BY COUNTNET

Our solution formulates the crowd counting task as a
counting problem, with an understanding of linearity and
non-linearity of the training set and test set. From our
experiments, we understand that other than the non-linearity

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

129

of the features explored by previous’ researches, there are
also non-linearity introduced by each of different crowd
density. To handle the size variations on the dataset, we slice
the dataset to a respective size so that all training set and test
set are images of typical size. Facilitating those reasons, we
need to employ some of preprocessing methods, selecting the
best pre-trained model that can generally captures linearity
and non-linearity, and also set our learning parameters to
maximize our convergence time and result. Those
employment are described below.

A. Preprocessing

Enhancing features captured by the algorithm, we
augment the data with several augmenting technique used
before in [3] and some addition of hand-engineered sampling
technique designed by ourselves. Features enhancement used
here is mainly to handle scale and direction variation and to
address dense crowd region.

First we do a multiscale pyramidal scaling from 0.5 to 1.3
with 0.1 steps incremented times the original full scale image
resolution. The scaling will make the algorithm more robust
to scale variation so that the algorithm can be trained to
recognize people in more scale variation. Then the scaled
image is sliced in patches of same size, so that the input to
the network is in controlled size. After that, the slices then
flipped in the left/right direction to further augment the
dataset. This data augmentation has obtained us around 2
million slices to train. Before we sample this 2 million, we
shuffle all this total sample randomly. By this augmentation,
the algorithm trained is more robust to scale and direction
variation and then can generalize well to most of the crowd
we have in our data.

Second, we sample high relative crowd count patches
more often and include also the other levels of relative crowd
count patches. In our reported result, we use a maximum of
200,000 slices of training set, consisted of a maximum of
10,000 slices from the lowest relative crowd count patches,
10,000 slices again from the low relative crowd count
patches, another 10,000 slices from the medium relative
crowd count patches, then 60,000 slices from high relative
crowd count patches, and lastly a maximum of 110,000
slices from the highest relative crowd count patches available
in our 2 million of total slices. This lowest to highest relative
crowd count level is calculated from the maximum and
minimum crowd count range divided by five to indicate five
categories, lowest, low, medium, high, highest. The highest
category’s upper bound is a half times the maximum crowd
count from all slices. This is done to make space for more
data variations from the same crowd count group. From our
training results, the sampling method ended up not using
200,000 slices as training sample. This happened because
there’s not enough slices available from the relative crowd
count group. For example, one group only have a 79,776
slices from a maximum of 110,000 slices. We tend to not
augment our training set more than what’s already done
because our infrastructure usage is already approaching its
limit from that total training set sampled.

B. Xception: Depthwise Separable Convolutions [6]

We have tried several networks to be the main predictor
of our end to end deep learning system, and we choose
Xception: Depthwise Separable Convolutions [6] network,
developed by Keras’ own author, François Chollet. Xception

is a convolutional neural network architecture based entirely
on depthwise separable convolution layers that map the
cross-channels correlations and spatial correlations in the
feature maps of convolutional neural networks, entirely
decoupled.

The Xception architecture has 36 convolutional layers
forming the feature extraction base of the network. The 36
convolutional layers are structured into 14 modules, all of
which have linear residual connections around them, except
for the first and last modules. In short, the Xception
architecture is a linear stack of depthwise separable
convolution layers with residual connections. [6]

We also choose this architecture because Xception have
one the best top-1 accuracy and top-5 accuracy on the
ImageNet validation dataset while also have the lowest
parameters count, size, and depth, compared to the recent
InceptionV3 and InceptionResNetV2 [7]. By the
performance on the ImageNet validation dataset, the network
proven to have a good proportion of linear and nonlinear
generalization in such a compact parameters count, size and
depth.

Our proposed end to end deep learning network will
output a predicted count for the input slice. To achieve this,
we omit the top layer of the Xception network (by setting the
include_top = False), and add fully connected network sized
1024 with relu activation to introduce non-linearity aspect to
the network’s final counting, and then add fully connected
network sized 256 also with relu activation, fully connected
network sized 16, and lastly, a fully connected network sized
1 to output a final predicted count. This final predicted count
will be the prediction of the input slice crowd count. The
illustration of our proposed end to end deep learning network
is shown in Fig 3.

Fig. 3. Our approach of End to End Deep Learning Network

C. Learning Parameters

We use cyclical learning rates as described in [10], so
that by creating new learning rate policies, our training could
converge faster than other linearly and even exponentially
decreasing learning rate policies. For the learning rate
policies, we choose base learning rate at 1e-6, max learning
rate at 1e-2, and gamma of 0.99994 in “exp range” mode.
We set step size equal to 2 − 10 times the number of

Output Predictions

Fully Connected Layers
(with ‘relu’ activations)

Xception Network
(pre-trained using ImageNet weights, without the top)

Input

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

130

iterations in an epoch. Number of iterations will be derived
from number of total training set data in each epoch divided
by batch size. This step size is a representation of half a cycle
from a full cycle of a cyclical learning rates. The learning
tends to converge at around 3 to 4 epochs, so we train our
network for 5 epochs at each of our training, to make sure the
convergence happens before the training finished.

D. Training Settings

For training purposes, this transfer learning method using
pre-trained weights from Xception network to be trained
again with the fully connected layers with glorot uniform
initializer as the default initializer from Keras. We train our
model using maximum of 200,000 samples from lower half
of the crowd distribution (to make space for more data
variation) and validate our model for each epoch, using
around 1,000 samples. The maximum of 200,000 samples
then will be trained as 64 mini-batches, and shuffled at each
epoch. This training is done for 5 epochs for each fold of the
5 folds cross validation method.

We only train the model until the validation loss
converges, as it marks the beginning of overfitting error or
variance error. If the validation loss goes lower than the
previous validation loss convergence point, we also take that
weights as the best weights of the training session. We don’t
take weights that has bigger validation loss than the
convergence points. This way, our model is preserved from
the overfitting training result.

IV. EXPERIMENTAL RESULTS

 This end to end deep learning approach is evaluated for
crowd counting on the challenging UCF_CC_50 [1] dataset,
contains 50 grayscale crowd images with various sizes and
with number of crowd count per image varies between 96
and 4631 people averaging at 1280 individuals per image.

 Similar to recent works, to ensure generalization and
exclude overfitting problem from testing trained dataset, our
approach is evaluated using 5-folds cross validation method.
The whole 50 images from UCF_CC_50 dataset is being
divided randomly into 5 splits with each splits then
containing 10 images. In each of the 5 folds, we consider 4
splits (40 images) for training the end to end deep learning
network and 1 remaining split (10 images) to test the
network. The maximum of 200,000 slices will be obtained
from each of these 40 training images in regards to
previously described data sampling and augmentation
method. On UCF dataset, this procedures yield around
170,000 slices of training patches per fold. We train our
CountNet: end to end deep learning network using Keras
[15] and Tensorflow [14] deep learning framework on Tesla
V-100 GPU and 64 GB of RAM. Our network was trained
using Adam Stochastic Optimizer [17, 18] with learning rate
policies later overruled by cyclical learning rates policies,
and calculate loss as mean absolute error. The average
training time per fold is around 5500 seconds.

A. Results

Measuring performance of our approach, we use Mean
Absolute Error (MAE) to quantify the error of every
predictions made by our approach. MAE computes the mean
of absolute difference between the ground truth counts and
the predicted counts for all images in this UCF dataset. The

result illustrates that compared to the others implementation
that creates a new network, this simple transfer learning
method with a network that already has the accuracy proven
for ImageNet can achieve a better accuracy than the others.

Our approach contains a random sampling and random
initialization, in which making the network prone to
robustness error. To completely show the result of our
trainings, we use average to describe our MAE. So each
trainings has its own MAE, but because we trained it 4 times,
we calculate each of our trainings MAE as average MAE
from 4 trainings, thus we call it average of 4 MAEs. The
average of 4 MAEs is 335.3, with the details of the 4 MAEs
in each folds written in Table 1.

TABLE I. 4 TIMES 5 FOLDS TRAINING IN DETAIL

Although our proposed method has an average MAE on

335.5, roughly seeing, the MAE is ranging from 300 to 370
and the method have a lowest prediction MAE on 297.5.
This shows that our method have certain robustness problem
in it. This problem should be addressed in future research so
that the estimated predictions have a reliable results.

Below also shown in Fig. 4, is the detailed predicted
count for each images in the UCF dataset, compared with its
actual count taken from Training 1. Vertical axes is for
amount of crowd count in each images. Horizontal axes is
for image number in UCF_CC_50 dataset. Red lines and dots
for prediction counts, blue lines and dots indicates ground
truth counts.

Fig. 4. Training 1 Result: Comparing Prediction and Ground Truths.

 Most of the prediction is close to the ground truth
counts, but we still see some of the predictions missed the
ground truth counts disorderly. This prediction error present
mainly because of a lack of training data. We have tried to
train the proposed method with our 2 million training data,
but we can’t go on because of the bottleneck in our
infrastructure settings.

4 Times 5 Folds Training
5 Folds

Training
Training 1 Training 2 Training 3 Training 4

Fold 1 261.8 388.1 445.3 491.8

Fold 2 269.9 287.1 323.9 279.9

Fold 3 239.2 302.3 284.2 215.8

Fold 4 554.2 444.3 494.1 458.7

Fold 5 162.5 321.2 310.4 171.8

5 Folds MAE 297.5 348.6 371.6 323.6

Average MAE 335.3

Image number of UCF_CC_50 dataset

Crowd
count

x

y

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

131

B. Comparison with Some Early Contributions

We compare our proposed method to some of the related
work and existing method referenced in this paper. The
comparison is shown in Table II.

TABLE II. RESULTS COMPARISON

Methods MAE

Idrees et al. [1] 419.5

Zhang et al. [2] 467.0

CrowdNet [3] 452.5

MsCNN [4] 363.7

MCNN [25] 377.6

Walach et al. [26] 364.4

Marsden et al. [5] 338.6

Proposed method 335.3

 The comparison above shows that the proposed method
has already achieved better results when compared to several
earlier approach. The proposed method, by the MAE, proved
that it is better than: global consistency constraint counts on
the head detections from texture elements [1], counting by
convolutional neural network (CNN) trained alternatively
with crowd density and count [2], counting by using density
estimation from concatenated deep and shallow network [3],
using multiscale CNN [4], multi-column CNN [25], CNN
with layered boosting and selective sampling [26], and Fully
CNN architecture [5]. Should the robustness problem be
handled in the future, this proposed method could achieve
state-of-the-art performance on the crowd counting task.

V. CONCLUSION

In this paper, we proposed an end-to-end deep learning
approach to deal with the crowd counting task. We showed
that by using pre-trained network, the Xception network, and
adding fully connected network at the top of the pre-trained
network, we can achieve a better crowd counting
performance by training it with augmented dataset that
robust to scale and slice variations. The proposed method has
achieved a better result from earlier methods that also tested
on the challenging highly dense crowd dataset, the
UCF_CC_50. Experimental result shows that the proposed
method can achieve even better result by addressing the
robustness problem on the estimated predictions.

ACKNOWLEDGMENT

The Titan XP used for this research was donated by the
NVIDIA Corporation, and this work was also supported by
Amazon Web Service (AWS) Educate, & Lembaga
Pengembangan Inovasi dan Kewirausahaan Institut
Teknologi Bandung (LPIK ITB).

REFERENCES
[1] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-

scale counting in extremely dense crowd images,” in CVPR 2013

[2] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd
counting via deep convolutional neural networks,” in CVPR 2015

[3] L. Boominathan, S.S. Kruthiventi, and R.V. Babu, “Crowdnet: a deep
convolutional network for dense crowd counting,” in ACM 2016

[4] L. Zeng, X. Xu, B. Cai, S.Qiu, and T. Zhang, “Multi-scale
convolutional neural networks for crowd counting,” in ICCV 2017

[5] M. Marsden, K. McGuinness, S. Little, and N. E. O’Connor, “Fully
convolutional crowd counting on highly congested scenes,” in
VISAPP 2017

[6] F. Chollet “Xception: Deep learning with depthwise separable
convolutions,” in CVPR 2017

[7] Documentation for individual models, (2018, July 10). Retrieved
from https://keras.io/applications/#xception

[8] S. Kumagai, K. Hotta, and T. Kurita, “Mixture of counting cnns:
adaptive integration of cnn’s specialized to specific appearance for
crowd counting,” in Machine Vision and Applications 2018

[9] M. Marsden, K. McGuinness, S. Little, and N. E. O’Connor,
“ResnetCrowd: a residual deep learning architecture for crowd
counting, violent behaviour detection and crowd density level
classification,” in AVVS 2017

[10] L. N. Smith , ”Cyclical learning rates for training neural networks,” in
WACV 2017

[11] J. Liu, C. Gao, D. Meng, and A. G. Hauptmann, “DecideNet:
counting varying density crowds through attention guided detection
and density estimation,” in CoRR 2017

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-
time object detection with region proposal networks,” in NIPS, 2015.

[13] R. Girshick, “Fast r-cnn,” in ICCV 2015

[14] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L.
Kaiser, M. Kudlur, J. Levenberg, D. Mane,´R. Monga, S. Moore, D.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[15] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.

[16] A. Ng, Machine Learning Yearning. Deeplearning.ai, 2018

[17] D. Kingma, and J. Ba, “Adam: a method for stochastic optimization,”
in ICLR 2015

[18] S. J. Reddi, S. Kale, S. Kumar, “On the convergence of adam and
beyond,” in ICLR 2018

[19] X. Liu, J. v. d. Weijer, and A. D. Bagdanov, “Leveraging unlabeled
data for crowd counting by learning to rank,” in CVPR 2018

[20] V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada, “Count
forest: co-voting uncertain number of targets using random forest for
crowd density estimation,” in ICCV 2015

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR 2005

[22] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning
shapelet features,” in CVPR 2007

[23] V. A. Sindagi and V. M. Patel, “CNN-based cascaded multi-task
learning of high-level prior and density estimation for crowd
counting,” in AVSS 2017

[24] A. B. Chan and N. Vasconcelos, “Bayesian poisson regression for
crowd counting,” in ICCV 2009

[25] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single image
crowd counting via multi-column convolutional neural network,” in
CVPR 2016

[26] E.Walach and L.Wolf, “Learning to count with cnn boosting,” in
ECCV 2016

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

132

