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Abstract—We approach crowd counting problem as a 
complex end to end deep learning process that needs both a 
correct recognition and counting. This paper redefines the 
crowd counting process to be a counting process, rather than 
just a recognition process as previously defined. Xception 
Network is used in the CountNet and layered again with fully 
connected layers. The Xception Network pre-trained 
parameter is used as transfer learning to be trained again with 
the fully connected layers. CountNet then achieved a better 
crowd counting performance by training it with augmented 
dataset that robust to scale and slice variations. 
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I. INTRODUCTION 

Crowd counting task in deep learning community is 
aiming to count every head of a human being present in a 
crowd shown in a photograph. The crowd in the photo is 
usually present in a different density, hence the name of the 
crowd counting, in a dense and sparse crowd. The crowd 
counting problem is actually a counting problem, done by 
estimating the number of people in the crowd, in regards to 
the distribution of the crowd density at one gathering area. 

One of the uniqueness in this deep learning task is that 
not only the whole photograph can be a training data, but 
also slices of the photograph can represent a whole 
photograph as a no crowd slices, sparse crowd slices, dense 
crowd slices, and the mixture of them all. This brings 
advantage to data collection process. Whilst in another deep 
learning task, researcher needs to acquire hundred thousands 
of data, 50 high resolution photograph can already make the 
same abundances. From this abundances, we can get millions 
of training data, just by using some augmenting processes. 

Besides that, crowd counting is a vast perspective 
problem. Some of the perspective in the earlier work is the 
detection [12, 13, 20, 21, 22, 24] and regression [2, 3, 4, 5, 8, 
23] network. Detection approach crowd counting is 
successful for scenes with low crowd density, but the 
performance on a very dense crowd is still problematic. This 
happened because on these dense crowd environment, 
usually only partial of the whole humans are visible, only 
head to shoulder for horizontally taken photos, and only the 
top of the head, for a orthogonally taken photos. For this 
method, parts to be detected by the method is too small, and 
the counting method will not detect any object that is not a 
crowd. This is why this method tends to underestimate the 
counting in a dense crowd settings, and that is still a 
challenge for the detection method. 

While counting by detection needs big part of a human 
body being located, crowd counting by regression simply 
estimates crowd counts without knowing the location of each 
person. Density estimation is sometimes used as an 
intermediate result, and then using a linear operation, e.g. 

sum, a crowd counting method get the overall crowd count 
results [2, 3]. The regression part, in [5] for example, is using 
fully CNN model for counting in highly congested scenes. 
Different with detection based crowd counting, regression 
based counting tends to overestimate sparse crowd settings 
counting prediction. This is happening because regression 
method is trying to find an n-dimensional polynomial 
function of linear and non-linear relationship between pixels 
and counting from each of the pixel. The performance of this 
method relies on the statistical stability of the pixels data. 
Thus, regression method needs is to explore intrinsic 
statistical principle of the whole data. 

Density estimation method itself is good for regression 
crowd counting if the intermediate output is handled again by 
a human processor or processed in an optimized hand 
engineered feature mapping. As described before, one of 
feature mapping used is a linear operation, which is to sum 
each pixels to get the crowd count. This approach should be 
working smoothly if the density making process could be 
inversed without a loss, or had an inverse for each pixels 
translation into the density, or if the blur filtered area’s total 
pixels value can be retained after the filtering process, so that 
the density making process do not change the ground truth 
crowd count. Crowd counting is a task with a rich variety of 
low and high level features and not only has many non-
linearity in its inputs, but also has many non-linearity in its 
outputs. This actually is not a simple counting task, it is 
actually a task to generalize massive non-linearity provided 
by differences of the crowd density. 

This research approaches crowd counting task as an end 
to end deep learning process. This process is partly different 
with some previous implementation of crowd counter. Some 
implementation only apply deep learning algorithm until it 
produces the output of predicted density map, thus the title, 
density estimation, and then sum the predicted density map 
to get the predicted crowd count. By that term, the algorithm 
performance is limited by the chosen counting method, and 
the end to end deep learning process is opening that limit so 
that the machine can also learn better counting method as 
well. The limitation is illustrated in Fig. 1, and the end-to-
end solution is illustrated in Fig. 2. 

 

 

Fig. 1. Previous implementations, introducing errors as e1, e2, and e3 

 

 

Fig. 2. End to end deep learning implementations. 

As we can see on Fig. 1., the previous’ implementations 
introduces three kinds of errors, e1, e2, and e3, from the 
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density making process, slicing process, prediction process 
and the output counting process respectively. While the 
prediction error (e2) is purely handled by the iterative 
training from the network, other errors such as density 
making error, slicing error and output counting error is not 
seen and calculated by the iterative training. That’s why the 
network will have errors at least from the sum of e1, e2 and 
e3. Different approach in Fig. 2. let the iterative training 
process see and calculate the counting errors and takes it as 
loss in a learning process. This way, we let the end-to-end 
deep learning process also learn from the counting errors by 
not limiting the potential performances of the counting 
system. This specific advantage makes the end-to-end 
approach a more favorable approach for crowd counting. 

Although the process tends not to limit the potential 
performances of the counting system, it needs a network that 
can generalize well to every linearity and nonlinearity 
available in the dataset and also a general training data. If the 
learning algorithm is a large-enough neural network and if it 
is trained with enough training data, it has the potential to do 
very well, and perhaps even approach the optimal error rate 
[15]. This end to end deep learning method can be 
confidently applied also because the result is not a decision, 
nor that the prediction error could turn into a fatal error. 

Covered in this paper is a crowd counting in a spatial 
term, not in a temporal term. This paper also redefines 
regression and detection method as a crowd counting with 
recognition-priority method, as the result is expected to 
reflect the ground truth density as close as possible and try to 
count the crowd with the density prediction being summed. 
CountNet is a counting-priority method and in it, the 
counting step will be learned by the algorithm itself, not by a 
hardwired sum method. This is handled by using extra fully 
connected layers. Extensive data augmentation used is by 
sampling patches from the multi-scale image representation 
to make the counting system robust to the scale variation. 
Our approach is trained and evaluated on the challenging 
UCF_CC_50 extremely dense crowds dataset and has 
achieved better result. 

In summary, we make the below contributions: 

 We find that crowd counting task is a problem of 
finding a generalization of many non-linearly 
distributed crowd density that can’t be counted or 
categorized easily. 

 Based on that understanding, we create an end to end 
deep learning method, CountNet, and tune every 
hyper parameters of it so that the algorithm can be 
trained with a good amount of a general kind data, do 
the model fitting properly, and expect many linearity 
and non-linearity to be captured by the algorithm. 

 Experimental results reveal that our method can 
achieve a better result on a challenging crowd 
counting dataset 

II. RELATED WORKS 

A. Crowd Counting by Detection 

Earlier works approach crowd counting by detecting the 
counted crowd. Some of the approaches are using region 
proposal generators, low-level features [21, 22], binary 
classifiers like Naive Bayes classifier [24], and Random 

Forest [20]. There are also CNN based object detectors [12, 
13] used to approach this crowd counting task. Detection 
based approach is successful for predicting scenes with low 
crowd density. On the occasions with high crowd density 
like in our chosen dataset, these approach performances are 
still not that good. The detection based crowd counting tends 
to underestimate the crowd counting predictions on the high 
crowd density, because only part of the whole objects are 
visible for localization be done by object detectors, or 
because the object in those highly congested areas are simply 
too small to be detected. 

B. Crowd Counting by Regression 

Counting by regression is not requiring the exact local 
position of each person in the crowd. In fact, some of the 
preliminary work use edge and detection features to learn 
mapping from image patterns to crowd counts.  A deep 
convolutional neural network (CNN) is also used in a 
switchable training scheme for crowd counting task in [2]. 
The early approach of crowd counting is using a 
concatenated deep VGG network and parallel shallow 
network [3], which at the time, performed the state-of-the-art 
result. Despite its error to the large crowd dataset, the result 
is actually precise at some images in the dataset. Some others 
used a fully convolutional network architecture [5] with a 
number of max pooling layer and a 2D integrator which is an 
element-wise sum, to deliver the crowd count, or with a 
cascaded multi-task learning settings for density estimation 
[23], or with a combination with Gating CNN [8], which is 
proven to be specialized in a specific appearance and has the 
robustness to large appearance changes. Others implemented 
a multi-scale convolutional neural network to extract scale-
relevant features from crowd images using a single column 
network based on the multi-scale blob [4]. Counting by 
regression is quite reliable in crowded settings and tends to 
overestimate predictions in a low crowd settings. This 
overestimations and errors in the regression based approach 
mainly come from the statistical stability of the data and the 
neediness of more instances to help explore intrinsic of that 
statistical stability principles. 

C. Crowd Counting by Other Methods 

Combining the best from both sides, there is an approach 
that combines results from the regression network and the 
detection network [11]. This superposition combination 
method is unique as it trains another network called ‘Quality-
Net block’ to captures the different importance weight of two 
density maps by dynamically assessing the qualities of the 
regression prediction and detection prediction for each pixel. 
This approach also covers the non-linearity introduced by 
different crowd density that some tried to grasp using a 
multi-task learning method. Other novel crowd counting 
approach leverages abundantly available unlabeled crowd 
imagery in a learning-to-rank framework [19]. This approach 
learn from unlabeled datasets by incorporating learning-to-
rank in a multi-task network which simultaneously ranks 
images and estimates crowd density maps.  

III. CROWD COUNTING BY COUNTNET 

Our solution formulates the crowd counting task as a 
counting problem, with an understanding of linearity and 
non-linearity of the training set and test set. From our 
experiments, we understand that other than the non-linearity 
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of the features explored by previous’ researches, there are 
also non-linearity introduced by each of different crowd 
density. To handle the size variations on the dataset, we slice 
the dataset to a respective size so that all training set and test 
set are images of typical size. Facilitating those reasons, we 
need to employ some of preprocessing methods, selecting the 
best pre-trained model that can generally captures linearity 
and non-linearity, and also set our learning parameters to 
maximize our convergence time and result. Those 
employment are described below. 

A. Preprocessing 

Enhancing features captured by the algorithm, we 
augment the data with several augmenting technique used 
before in [3] and some addition of hand-engineered sampling 
technique designed by ourselves. Features enhancement used 
here is mainly to handle scale and direction variation and to 
address dense crowd region. 

First we do a multiscale pyramidal scaling from 0.5 to 1.3 
with 0.1 steps incremented times the original full scale image 
resolution. The scaling will make the algorithm more robust 
to scale variation so that the algorithm can be trained to 
recognize people in more scale variation. Then the scaled 
image is sliced in patches of same size, so that the input to 
the network is in controlled size. After that, the slices then 
flipped in the left/right direction to further augment the 
dataset. This data augmentation has obtained us around 2 
million slices to train. Before we sample this 2 million, we 
shuffle all this total sample randomly. By this augmentation, 
the algorithm trained is more robust to scale and direction 
variation and then can generalize well to most of the crowd 
we have in our data. 

Second, we sample high relative crowd count patches 
more often and include also the other levels of relative crowd 
count patches. In our reported result, we use a maximum of 
200,000 slices of training set, consisted of a maximum of 
10,000 slices from the lowest relative crowd count patches, 
10,000 slices again from the low relative crowd count 
patches, another 10,000 slices from the medium relative 
crowd count patches, then 60,000 slices from high relative 
crowd count patches, and lastly a maximum of 110,000 
slices from the highest relative crowd count patches available 
in our 2 million of total slices. This lowest to highest relative 
crowd count level is calculated from the maximum and 
minimum crowd count range divided by five to indicate five 
categories, lowest, low, medium, high, highest. The highest 
category’s upper bound is a half times the maximum crowd 
count from all slices. This is done to make space for more 
data variations from the same crowd count group. From our 
training results, the sampling method ended up not using 
200,000 slices as training sample. This happened because 
there’s not enough slices available from the relative crowd 
count group. For example, one group only have a 79,776 
slices from a maximum of 110,000 slices. We tend to not 
augment our training set more than what’s already done 
because our infrastructure usage is already approaching its 
limit from that total training set sampled. 

B. Xception: Depthwise Separable Convolutions [6] 

We have tried several networks to be the main predictor 
of our end to end deep learning system, and we choose 
Xception: Depthwise Separable Convolutions [6] network, 
developed by Keras’ own author, François Chollet. Xception 

is a convolutional neural network architecture based entirely 
on depthwise separable convolution layers that map the 
cross-channels correlations and spatial correlations in the 
feature maps of convolutional neural networks, entirely 
decoupled.  

The Xception architecture has 36 convolutional layers 
forming the feature extraction base of the network. The 36 
convolutional layers are structured into 14 modules, all of 
which have linear residual connections around them, except 
for the first and last modules. In short, the Xception 
architecture is a linear stack of depthwise separable 
convolution layers with residual connections. [6] 

We also choose this architecture because Xception have 
one the best top-1 accuracy and top-5 accuracy on the 
ImageNet validation dataset while also have the lowest 
parameters count, size, and depth, compared to the recent 
InceptionV3 and InceptionResNetV2 [7]. By the 
performance on the ImageNet validation dataset, the network 
proven to have a good proportion of linear and nonlinear 
generalization in such a compact parameters count, size and 
depth. 

Our proposed end to end deep learning network will 
output a predicted count for the input slice. To achieve this, 
we omit the top layer of the Xception network (by setting the 
include_top = False), and add fully connected network sized 
1024 with relu activation to introduce non-linearity aspect to 
the network’s final counting, and then add fully connected 
network sized 256 also with relu activation, fully connected 
network sized 16, and lastly, a fully connected network sized 
1 to output a final predicted count. This final predicted count 
will be the prediction of the input slice crowd count. The 
illustration of our proposed end to end deep learning network 
is shown in Fig 3. 

 

 

 

 

 

 

 

Fig. 3. Our approach of End to End Deep Learning Network 

C. Learning Parameters 

We use cyclical learning rates as described in [10], so 
that by creating new learning rate policies, our training could 
converge faster than other linearly and even exponentially 
decreasing learning rate policies. For the learning rate 
policies, we choose base learning rate at 1e-6, max learning 
rate at 1e-2, and gamma of 0.99994 in “exp range” mode. 
We set step size equal to 2 − 10 times the number of 
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iterations in an epoch. Number of iterations will be derived 
from number of total training set data in each epoch divided 
by batch size. This step size is a representation of half a cycle 
from a full cycle of a cyclical learning rates. The learning 
tends to converge at around 3 to 4 epochs, so we train our 
network for 5 epochs at each of our training, to make sure the 
convergence happens before the training finished. 

D. Training Settings 

For training purposes, this transfer learning method using 
pre-trained weights from Xception network to be trained 
again with the fully connected layers with glorot uniform 
initializer as the default initializer from Keras. We train our 
model using maximum of 200,000 samples from lower half 
of the crowd distribution (to make space for more data 
variation) and validate our model for each epoch, using 
around 1,000 samples. The maximum of 200,000 samples 
then will be trained as 64 mini-batches, and shuffled at each 
epoch. This training is done for 5 epochs for each fold of the 
5 folds cross validation method. 

We only train the model until the validation loss 
converges, as it marks the beginning of overfitting error or 
variance error. If the validation loss goes lower than the 
previous validation loss convergence point, we also take that 
weights as the best weights of the training session. We don’t 
take weights that has bigger validation loss than the 
convergence points. This way, our model is preserved from 
the overfitting training result. 

IV. EXPERIMENTAL RESULTS 

 This end to end deep learning approach is evaluated for 
crowd counting on the challenging UCF_CC_50 [1] dataset, 
contains 50 grayscale crowd images with various sizes and 
with number of crowd count per image varies between 96 
and 4631 people averaging at 1280 individuals per image. 

 Similar to recent works, to ensure generalization and 
exclude overfitting problem from testing trained dataset, our 
approach is evaluated using 5-folds cross validation method. 
The whole 50 images from UCF_CC_50 dataset is being 
divided randomly into 5 splits with each splits then 
containing 10 images. In each of the 5 folds, we consider 4 
splits (40 images) for training the end to end deep learning 
network and 1 remaining split (10 images) to test the 
network. The maximum of 200,000 slices will be obtained 
from each of these 40 training images in regards to 
previously described data sampling and augmentation 
method. On UCF dataset, this procedures yield around 
170,000 slices of training patches per fold. We train our 
CountNet: end to end deep learning network using Keras 
[15] and Tensorflow [14] deep learning framework on Tesla 
V-100 GPU and 64 GB of RAM. Our network was trained 
using Adam Stochastic Optimizer [17, 18] with learning rate 
policies later overruled by cyclical learning rates policies, 
and calculate loss as mean absolute error. The average 
training time per fold is around 5500 seconds. 

A. Results 

Measuring performance of our approach, we use Mean 
Absolute Error (MAE) to quantify the error of every 
predictions made by our approach. MAE computes the mean 
of absolute difference between the ground truth counts and 
the predicted counts for all images in this UCF dataset. The 

result illustrates that compared to the others implementation 
that creates a new network, this simple transfer learning 
method with a network that already has the accuracy proven 
for ImageNet can achieve a better accuracy than the others. 

Our approach contains a random sampling and random 
initialization, in which making the network prone to 
robustness error. To completely show the result of our 
trainings, we use average to describe our MAE. So each 
trainings has its own MAE, but because we trained it 4 times, 
we calculate each of our trainings MAE as average MAE 
from 4 trainings, thus we call it average of 4 MAEs. The 
average of 4 MAEs is 335.3, with the details of the 4 MAEs 
in each folds written in Table 1. 

TABLE I.  4 TIMES 5 FOLDS TRAINING IN DETAIL 

 
Although our proposed method has an average MAE on 

335.5, roughly seeing, the MAE is ranging from 300 to 370 
and the method have a lowest prediction MAE on 297.5. 
This shows that our method have certain robustness problem 
in it. This problem should be addressed in future research so 
that the estimated predictions have a reliable results. 

Below also shown in Fig. 4, is the detailed predicted 
count for each images in the UCF dataset, compared with its 
actual count taken from Training 1. Vertical axes is for 
amount of crowd count in each images. Horizontal axes is 
for image number in UCF_CC_50 dataset. Red lines and dots 
for prediction counts, blue lines and dots indicates ground 
truth counts.  

 

 

Fig. 4. Training 1 Result: Comparing Prediction and Ground Truths. 

  Most of the prediction is close to the ground truth 
counts, but we still see some of the predictions missed the 
ground truth counts disorderly. This prediction error present 
mainly because of a lack of training data. We have tried to 
train the proposed method with our 2 million training data, 
but we can’t go on because of the bottleneck in our 
infrastructure settings. 

4 Times 5 Folds Training 
5 Folds 

Training 
Training 1 Training 2 Training 3 Training 4 

Fold 1 261.8 388.1 445.3 491.8 

Fold 2 269.9 287.1 323.9 279.9 

Fold 3 239.2 302.3 284.2 215.8 

Fold 4 554.2 444.3 494.1 458.7 

Fold 5 162.5 321.2 310.4 171.8 

5 Folds MAE 297.5 348.6 371.6 323.6 

Average MAE 335.3 

Image number of UCF_CC_50 dataset 

Crowd 
count 

x 
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B. Comparison with Some Early Contributions 

We compare our proposed method to some of the related 
work and existing method referenced in this paper. The 
comparison is shown in Table II. 

TABLE II.  RESULTS COMPARISON 

Methods MAE 

Idrees et al. [1] 419.5 

Zhang et al. [2] 467.0 

CrowdNet [3] 452.5 

MsCNN [4] 363.7 

MCNN [25] 377.6 

Walach et al. [26] 364.4 

Marsden et al. [5] 338.6 

Proposed method 335.3 

 

 The comparison above shows that the proposed method 
has already achieved better results when compared to several 
earlier approach. The proposed method, by the MAE, proved 
that it is better than: global consistency constraint counts on 
the head detections from texture elements [1], counting by 
convolutional neural network (CNN) trained alternatively 
with crowd density and count [2], counting by using density 
estimation from concatenated deep and shallow network [3], 
using multiscale CNN [4], multi-column CNN [25], CNN 
with layered boosting and selective sampling [26], and Fully 
CNN architecture [5]. Should the robustness problem be 
handled in the future, this proposed method could achieve 
state-of-the-art performance on the crowd counting task. 

V. CONCLUSION 

In this paper, we proposed an end-to-end deep learning 
approach to deal with the crowd counting task. We showed 
that by using pre-trained network, the Xception network, and 
adding fully connected network at the top of the pre-trained 
network, we can achieve a better crowd counting 
performance by training it with augmented dataset that 
robust to scale and slice variations. The proposed method has 
achieved a better result from earlier methods that also tested 
on the challenging highly dense crowd dataset, the 
UCF_CC_50. Experimental result shows that the proposed 
method can achieve even better result by addressing the 
robustness problem on the estimated predictions. 
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